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Abstract. We have studied experimentally the electrical magneto-conductivity near the superconducting
transition of YBa2Cu3O7−δ , YBa2 (Cu2.95Zn0.05)O7−δ and Y(Ba1.75Sr0.25)Cu3O7−δ polycrystalline sam-
ples. The measurements were performed in magnetic fields ranging from 0 to 400 Oe applied parallel to the
current orientation. The results show that the resistive transition of these systems proceeds in two stages.
The pairing transition occurs at the bulk critical temperature Tc, where superconductivity is stabilized
within small and homogeneous regions of the sample generically called grains. The regime of approach to
the zero resistance state reveals the occurrence of a coherence transition at a lower temperature Tc0. This
transition is related to the connective nature of the granular samples and is controlled by fluctuations of the
order-parameter phase of individual grains. Our experiments show that the Zn-doping, besides depressing
the pairing critical temperature, strongly enlarges the temperature range dominated by effects related to
the coherence transition. The substitution of Ba by Sr causes only a small reduction of Tc, but also en-
hances significantly the effects related to the grain coupling phenomenology. In general, our results indicate
that these impurity substitutions in YBa2Cu3O7−δ produce or magnify the granularity at a microscopic
level, enhancing the effects of phase fluctuations in the conductivity near the transition.

PACS. 74.40.+k Fluctuations – 74.72.Bk Y-based cuprates – 74.81.Bd Granular, melt-textured, amor-
phous, and composite superconductors

1 Introduction

The sintered samples of the high temperature supercon-
ducting cuprates (HTSC) show a pronounced granular
character that plays an important role in many of their
properties. It is well-known from detailed investigations
of thin-film bicrystals that the boundaries between crys-
tallites behave as Josephson junctions that are extremely
sensible to applied magnetic fields [1,2]. These metallurgi-
cal grain boundaries are responsible for the disappointing
low critical currents observed in standard polycrystalline
HTSC samples [3]. In addition, phase separation [4,5] and
a variety of defects inside crystals, ranging from impuri-
ties to micro-cracks, may also locally depress the super-
conducting order parameter [6], thus enhancing the overall
granular character of superconductivity in polycrystalline
HTSC.

The resistive transition of sintered samples of the
HTSC shows a characteristic two stage behavior [7–9].
When the temperature is decreased, one first observes the
pairing transition, where superconductivity is stabilized in
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some small and homogeneous regions of the sample. These
superconducting grains may not necessarily be coincident
with the crystallographic grains [6,10]. The pairing tran-
sition occurs at a temperature practically identical to the
bulk Tc. In lower temperatures, the resistivity is described
by a percolation-like process related to the activation of
weak links between the superconducting grains [8–11]. The
resistivity becomes zero at the coherence transition [9–11]
that occurs in a critical temperature Tc0 well below Tc.
This transition is dominated by the fluctuating phases of
the Ginzburg-Landau (G-L) order parameter of individual
grains that couple into a long range ordered state, leading
to the zero resistance state [9–11].

The simplest description of this process when it occurs
in the presence of a magnetic field is given by a generalized
version of the pair tunneling Hamiltonian [12]

H = −
∑

i,j

Jij cos (θi − θj − Aij), (1)

where the sums run over nearest neighbor grains, Jij is
the coupling energy between grains i and j, and θi is the
phase of the G-L order parameter in grain i. The gauge
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factor Aij is given by

Aij =
2π

Φ0

∫ j

i

A · dl, (2)

where Φ0 is the flux quantum and the line integral for
the vector potential is evaluated between the centers of
grains i and j. The model represented by equation (1)
belongs to the 3D-XY class with nontrivial (associated to
frustration) disorder [8]. Frustration is consequence of a
random distribution of the factors Aij [12,13]. In this case,
one has the gauge glass version of the model represented
by equation (1). Frustration may also be introduced as
in the chiral glass model [14] when positive and negative
values for the couplings Jij are present on a nearly equal
footing. Negative Jij are characteristic of π-junctions in
d-wave superconductors [15]. These anomalous couplings
also occur when magnetic impurities exist in the dielectric
layer forming the junction [16,17].

The coherence transition has been studied experimen-
tally by means of careful resistivity versus temperature
measurements in many granular samples of the HTSC [9,
11,18–23]. In several of these experiments, magnetic fields
were applied parallel or perpendicular to the current ori-
entation. Specific heat results were also used to study this
transition in polycrystalline YBa2Cu3O7−δ (Y123) and
Zn-doped Y123 samples [24]. These studies show that in
the regime of approach to the zero resistance state the con-
ductivity diverges as a power law of the reduced tempera-
ture (T − Tc0)/Tc0. The values found for the conductivity
critical exponents λ are much larger than those expected
with basis on the homogeneous 3D-XY model [9]. This
result indicates that disorder is relevant for the critical-
ity in this problem. In the ordered case one would expect
λ ≈ 1/3 [25]. This exponent is observed in the fluctuation
regime above the pairing transition in sintered [26] and
single crystal [27,28] samples of the HTSC. In granular
samples, λ ≈ 3 and λ ≈ 4 have been usually found near
the coherence transition [9,18–21]. In addition to λ ≈ 3,
some authors also report the observation of the exponent
λ ≈ 1.3 [22,23].

In this article we report a study of the resistive tran-
sition in polycrystalline Y123, pure and containing Zn or
Sr impurities. Emphasis is given on the role of impuri-
ties. It is known that both of these dopants cause sizeable
modifications in the electronic properties of Y123. The Zn
is substitutional to the Cu atoms in the superconducting
Cu-O2 planes and causes a strong reduction of Tc [29].
Magnetic moments are stabilized around the Zn impuri-
ties [30], and some local magnetic ordering may be pro-
duced [30,31]. The Sr impurities are substitutional to the
Ba atoms [32,33]. In this case a gradual reduction of Tc,
which depends linearly on the impurity concentration, is
verified. For both impurities, however, a strong enhance-
ment of the granularity effects in transport and magnetic
properties is observed [34]. One may suppose that dop-
ing effectively induces granularity at the microscopic level
and weakens the coupling between larger grains. One con-
sequence of this fact is the enhancement of phase fluc-
tuations effects in the resistive transition of doped sam-

ples [35] that could be regarded as model systems for
studying the coherence transition. Particularly, in the case
of the Zn-doped sample, the proposed suppression of the
superconducting carrier density around the Zn impurities,
known as the “Swiss-cheese model” [36], is expected to be
rather efficient to enhance the granularity effects at the
microscopic level.

Our results allow the determination of the critical ex-
ponents and amplitudes for the fluctuation conductivity
near the coherence transition of the investigated sam-
ples. Critical exponents are sample independent confirm-
ing prior studies [9,20,21]. The amplitudes, however, are
extremely sensible to the degree of granular disorder.
Moreover, the critical amplitudes increase continuously
with the magnetic field intensity. A universal scaling was
obtained for the fluctuation conductivity in the temper-
ature range that precedes the coherence transition. The
associated reduced temperature depends both on Tc0 and
Tc. This scaling is justified in terms of the general vortex-
glass theory [37].

2 Experimental details

Using the standard solid state reaction and sinter-
ing techniques, we have prepared two polycrystalline
samples of YBa2Cu3O7−δ, labeled Y123:a and Y123:b,
one of YBa2(Cu2.95Zn0.05)O7−δ (Y123:Zn), and one of
Y( Ba1.75Sr0.25)Cu3O7−δ (Y123:Sr). Powders of Y2O3,
BaCO3, CuO, SrCO3 and ZnO having 99.99% purity or
better were mixed in adequate proportions to prepare the
samples. The initial calcination was performed in 950 ◦C
in zirconia crucible under oxygen atmosphere. The re-
sulting pellets were finely powdered, loosely pressed and
heated again to 950 ◦C during several hours in oxygen at-
mosphere and ground again. After this intermediate pro-
cess, a final sinterization was done of the powders pressed
at 3 ton/cm2 into disks of thickness about 2 mm and
diameter of 9 mm. The sinterization was performed for
24 h in 930 ◦C. Subsequently, the samples were slowly
cooled down to 450 ◦C and submitted to a final annealing
at this temperature for further 24 h under oxygen atmo-
sphere. The resulting samples were characterized by X-ray
diffraction that showed they are single-phase and have the
expected lattice parameters. Densities about 80% of the
ideal values were obtained. Examination with optical mi-
croscopy showed a typical ceramic morphology with crys-
tallite sizes in the range 1–10 µm Specimens in the form
of parallelepiped, adequate for resistivity measurements,
were cut out from the sintered buttons with a diamond
saw. Typical sample dimensions are 1 × 1 × 9 mm3.

The resistivity experiments were performed with a low-
frequency AC technique based on an ESI automatic ratio
transformer that balances a compensation circuit, and a
lock-in amplifier that operates as a null detector. Rela-
tive sensitivities around 10−5 were obtained in the re-
sistivity measurements. Current densities of 0.1 A/cm2

and 1 A/cm2 were employed. Four contacts in the form
of stripes perpendicular to the current axis were silver
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painted on one of the largest samples’ surfaces. The con-
tact resistances ranged between 1 and 3 ohms. Several
magnetic field intensities up to 400 Oe could be applied
parallel to the current direction. In-field measurements
were carried out according to the field cooled (FC) pre-
scription. For a given field magnitude at least two resis-
tivity versus temperature runs were accomplished, one for
decreasing temperatures, the other for increasing temper-
atures. In some cases more than two runs were needed to
make a reliable quantitative analysis of the results. Tem-
perature was measured with a Pt sensor allowing a resolu-
tion better than 2 mK. Measurements were concentrated
in the temperature range encompassing the superconduct-
ing transition. A large number of data points were auto-
matically recorded while the temperature drifted at rates
never exceeding 5 K/h. The temperature derivative of the
resistivity could be numerically determined with a good
accuracy.

3 Results

Figure 1 shows dρ/dT as a function of temperature for the
granular Y123:a, Y123:Sr and Y123:Zn samples at zero
applied field. The two-stage nature of the superconduct-
ing transition in these systems is apparent from these re-
sults. The position of the main peak in dρ/dT , which is
denoted as TP , is approximately coincident with the pair-
ing critical temperature Tc [38]. The effects of granularity
dominate the resistivity behavior from the bulk Tc down
to the onset of the zero resistance state. We observe the
strong depression of Tc as consequence of Zn substitution
in the Cu sites of the CuO2 planes. It is also evident that
the Zn substitution causes a significant enlargement of the
width of the resistive transition, indicating that granular-
ity is enhanced by Zn-doping. We note a small but sizeable
reduction of Tc for the Y123:Sr sample. The pairing criti-
cal temperatures determined from the position of TP are
92.3 K, 92 K, 90 K and 79.4 K for Y123:a, Y123:b, Y123:Sr
and Y123:Zn, respectively.

Figure 2 shows the resistive transition for the Y123:a
and Y123:b samples in several applied fields. Upper pan-
els present resistivity versus temperature plots, whereas
in lower panels dρ/dT results are shown in the same tem-
perature range. Figure 3 shows similar measurements for
the Y123:Zn and Y123:Sr samples. The applied magnetic
fields practically do not affect the shape of the curves in
the temperature range above the main peak in dρ/dT . Be-
low TP , and down to the zero-resistance state, the resistiv-
ity of these granular samples is strongly field-dependent.
Since the field is systematically applied parallel to the cur-
rent, dissipation effects due to the flow of Abrikosov vor-
tices are minimized. Thus, the field induced enlargement
of the resistive transition in our samples is an effect di-
rectly related to granularity. Indeed, an applied magnetic
field is expected to enhance the granular character of the
samples by weakening the junctions between grains.

We separate the contribution of thermal fluctuations to
the conductivity by using a method based on the Kouvel-

Fig. 1. Temperature derivative of the resistivity near Tc at
zero applied field for the Y123:b, Y123:Sr and Y123:Zn sam-
ples. The position of the maximum in dρ/dT , denoted as TP ,
corresponds approximately to the intragrain pairing transition.
The vertical scale at left applies only to the Y123:Zn sample.

Fig. 2. The resistive transition for the Y123:a and Y123:b
samples under magnetic fields applied parallel to the current.
Field magnitudes are 0, 10, 50 and 200 Oe for both samples.
The transition width enlarges as the field increases. Upper
panels represent resistivity versus temperature measurements,
whereas the lower panels show the corresponding temperature
derivatives.

Fischer analysis of critical phenomena [39]. We numeri-
cally determine the quantity [26]

χσ = − d

dT
ln ∆σ, (3)

where ∆σ is the fluctuation conductivity, given by

∆σ = σ − σR. (4)

In equation (4), σ is the measured conductivity and the
subtracted regular term is estimated by extrapolating the
high-temperature behavior, σ−1

R = a + bT , down to the
region of the transition.
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Fig. 3. The same as Figure 2, but for the Y123:Zn and Y123:Sr
samples.

Assuming that the coherence transition occurs at a
critical temperature Tc0 near the onset of the zero resis-
tance state, one expects that ∆σ diverges as a power law
when the temperature approaches Tc0 from above, that is,

∆σ = A (T − Tc0)
−λ

. (5)

From the substitution of equation (5) in equation (3), we
obtain that

χ−1
σ =

1
λ

(T − Tc0) . (6)

Thus, the identification of a linear regime in plots of χ−1
σ

versus T in the temperature region relevant to the co-
herence transition (near the zero resistance state) allows
the simultaneous determination of the critical tempera-
ture Tc0 and the critical exponent λ.

In Figure 4 we show the resistive transition of Y123:Sr
(upper panel) and Y123:Zn (lower panel) represented as
χ−1

σ vs. T in some of the studied fields. Similar results
were obtained for the Y123:a and Y123:b samples. The
two-stage character of the transition is still more evident
in the representation of Figure 4. Above the deep mini-
mum where Tc is located, the conductivity is enhanced by
superconducting thermal fluctuations in the normal phase.
The quantity χ−1

σ is almost field-independent in this re-
gion, which precedes the pairing transition. Conductivity
fluctuations in this case are governed by the 3D-XY-E
universality class [26–28]. The region of validity of this
critical regime and the extrapolated Tc are indicated by a
thin straight line in Figure 4, for both compounds.

In the present paper, however, we focus on the scaling
of the conductivity near the zero resistance state. Below
the minimum, χ−1

σ shows a strongly field-dependent be-
havior. Effects related to granularity dominate in this re-
gion and another scaling behavior, which is due to phase

Fig. 4. Resistive transition for the Y123:Sr and Y123:Zn sam-
ples represented as χ−1

σ versus temperature (see text) in several
applied fields. Fields are 2, 10, 50, 100, 200, 400 Oe for Y123:Sr
and 0, 10, 50, 200 Oe for Y123:Zn. The transition enlarges reg-
ularly with increasing field. The straight lines correspond to fits
to equation (6) with the quoted exponent. Also represented is
the position TP of the main peak in dρ/dT .

fluctuations in the granular array, may be identified. Par-
ticularly, the set of parallel solid straight lines obtained
from fitting the χ−1

σ data in Figure 4 corresponds to
the asymptotic regime of the coherence transition, where
equation (6) is valid.

In Table 1 are shown the values obtained for the crit-
ical conductivity exponents from fittings of the data to
equation (6). In zero and very low applied field (smaller
than 10 Oe, typically), the power law behavior of the con-
ductivity is characterized by the exponent λ ∼= 3 for all of
the studied samples, excepting Y123:b where λ is larger.
The exponent λ ∼= 3 has been identified in other exper-
iments performed in zero and very low fields [18–22,35].
However, when the magnetic field exceeds a few Oerst-
eds, the value λ ∼= 4 is generally found [9,20,21]. Sample
Y123:b, listed in Table 1, is a rare exception. In this case,
the high value found for this exponent (λ ∼= 5) suggests
that an exponential conductivity term due to the flow of
Abrikosov vortices competes with the power law behavior
characteristic of the coherence transition.

4 Discussion

Assuming that the conductivity near the zero resistance
state of granular superconductors is dominated by a ther-
mally controlled percolation-like transition, the contribu-
tion of thermal fluctuations is characterized by a critical
exponent given by [37]

λ = ν (2 + z − d) , (7)
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Table 1. Parameters for the investigated samples: critical tem-
perature determined from the peak of dρ/dT ; resistivity at 100
K; normalized critical amplitude for the coherence transition;
critical exponents for the coherence transition in zero applied
field and in the presence of a magnetic field.

Sample Tc ρ(100 K) A0 λ λ
(K) (mΩcm) (mΩcm) (H = 0) (H �= 0)

Y123:a 92.3 0.96 1.0 ± 0.1 2.4 ± 0.1 3.8 ± 0.3
Y123:b 92.0 0.8 13.5 ± 3 4.3 ± 0.6 4.9 ± 0.4
Y123:Sr 90.0 0.7 74 ± 7 3.0 ± 0.1 3.7 ± 0.2
Y123:Zn 79.4 1.0 1170 ± 120 3.4 ± 0.4 4.1 ± 0.2

where ν is the critical exponent for the correlation length
and z is the dynamical exponent.

The value found for λ near the zero field limit in the
Y123:a, Y123:Zn and Y123:Sr systems (see Tab. 1) is in
good agreement with predictions of a Monte Carlo study
by Wengel and Young [40], based on the 3D-XY phase-
glass Hamiltonian given by equation (1). These authors
found that in both the gauge-glass and chiral-glass ver-
sions of the model based on equation (1), the critical phe-
nomenology is described by the exponents υ ∼= 1.3 and
z ∼= 3.1. These values imply that λ ∼= 3 according to equa-
tion (7).

However, in the presence of a field, the experimen-
tal exponent corresponding to the asymptotic coherence
regime is λ = 4.0 ± 0.3 in our granular systems. This
value is in agreement with determinations of earlier exper-
iments [9,20,21,26]. The value λ ∼= 4.0 may be understood
within the approach of Wengel and Young [40] if the dy-
namical exponent undergoes a crossover to z ∼= 4, which is
a value expected for a spin glass-like critical dynamics [41].
A large value for z is also reported in many investigations
of the I–V characteristics of granular HTSC [42,43]. We
also mention that the experimental λ = 4.0±0.3 is in good
agreement with the prediction of a Monte Carlo study by
Olson and Young [44] for the 3D-gauge glass that gives
λ = 4.5 ± 1.1. In any case, the conductivity exponents
found in our study suggest that the universality class for
the coherence transition is that of the 3D-XY model where
non-trivial disorder is relevant.

An interesting feature observed in the data of Figure 4
is a systematic downwards deviation of the straight line
fits when the zero resistance state is approached. Although
one should be aware of the significant uncertainty asso-
ciated to data in this region because of their numerical
determination, if we suppose that χ−1

σ is still described
by equation (6), the downwards deviation would corre-
spond to a crossover to a fluctuation regime characterized
by an exponent smaller than the fitted λ. This behavior
is consistent with the description of the coherence transi-
tion within the 3D-XY critical thermodynamics. Indeed,
very close to the critical point, the temperature dependent
coherence length diverges and eventually becomes larger
than the correlation length for the disordered structure.
In such a situation, disorder ceases to be relevant and the
small 3D-XY exponents of the ordered case should be re-
covered.

The behavior of the χ−1
σ results in the region above

the coherent transition, as shown in Figure 4, strongly
suggests that the whole measurements may be scaled as
to collapse into a single curve. In order to verify the va-
lidity of this assumption, we note that the scaling behav-
ior proposed for the fluctuation conductivity close to the
vortex-glass transition is given by [45]

∆σ(T, H) ≈ H−(2+z−d)/2S±

(
t

H1/2υ

)
, (8)

where t = (T − Tc0)/Tc0, and S± are scaling functions
above and below Tc0, respectively.

Following Fischer et al. [37], we assume that

[Tc − Tc0 (H)] ≈ H1/2υ (9)

and derive

∆σ ≈ [Tc − Tc0 (H)]−υ(2+z−d)
F± (τ) , (10)

where F±(τ) are scaling functions of the variable

τ =
T − Tc0 (H)
Tc − Tc0 (H)

. (11)

This scaling variable was first introduced by Kötzler
et al. [46] for describing the dynamical scaling of the
complex electrical conductivity of YBa2Cu3O7−δ near the
vortex-glass transition.

From equation (10) we obtain that

d

dτ
ln F+ (τ) = −χσ [Tc − Tc0 (H)] (12)

in the paracoherent region (above Tc0 and below Tc). In
Figure 5 is shown a plot of χσ [Tc − Tc0 (H)] versus τ
that was obtained by scaling the data for Y123:a, Y123:b,
Y123:Sr and Y123:Zn in all of the studied fields. Good
scaling is obtained in most of the range [0,1] for the
variable τ . Marked deviations occur close to the high-
temperature end of the scaling range, where a steep in-
crease of χ−1

σ is observed in temperatures just below the
minimum where Tc is located. This particular regime,
though below Tc, is still influenced by fluctuations in the
normal phase [9].

The fact that all of our measurements scale as shown
in Figure 5 gives support to the description of the regime
of approach to the zero resistance state in granular HTSC
samples as precursory to a phase transition phenomenon.
In order to search for further evidence of the validity of
this assumption, we study the critical amplitudes, Ac, for
the fluctuation conductivity above Tc0, that is,

Ac = ∆σ /t−λ. (13)

We derive the critical amplitudes from the experimental
data in the asymptotic temperature interval just above
Tc0, where the exponent λ is determined. We obtain that
Ac is an increasing function of the applied magnetic field
(see Fig. 6). We also found that the values for Ac are
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Fig. 5. Scaling of the fluctuation conductivity based on equa-
tion (12) in the coherence regime between Tc0 and Tc for the
Y123a, Y123b, Y123:Sr and Y123:Zn samples. The whole set
of results obtained in magnetic fields ranging from 0 to 400 Oe
are plotted.

Fig. 6. Normalized critical amplitudes of the fluctuation con-
ductivity in the asymptotic coherence regime as functions of
the applied field. The continuous line is calculated with equa-
tion (14) using the exponent η = 0.6± 0.2. The fitting param-
eters A0 are quoted in Table 1.

strongly sample dependent. This is not surprising since the
coherence transition is a percolation-type process. Then,
the resistivity in this regime is expected to be extremely
sensitive to particularities of the sample’s granularity. In
Figure 6 we show the critical amplitudes normalized as
Ac/A0 versus the applied field for the Y123:a, Y123:b,
Y123:Zn and Y123:Sr samples. We arbitrarily choose A0 =
1 for the Y123:a sample measured in the field H = 100 Oe.
The values for A0 for the other samples are determined so
that the data collapse into a single plot. The values found
for A0 are listed in Table 1. In Figure 6 these data are
phenomenologically fitted to

Ac (H) = A0e
−a/Hη

, (14)

where a is a constant. Equation (14) mimics the behav-
ior of the nonlinear voltage response near the vortex-glass
transition with the longitudinal H playing a role similar
to that of the current density [32,42]. From the fit of the
amplitude data to equation (14), we obtain η = 0.6± 0.2.
This value is within the expectations of the vortex-glass
theory [32,42].

Equation (14) predicts that Ac(H) tends to zero in
the H = 0 limit. Experimentally, however, we find a small

value for this amplitude in zero applied field. This might
be originated by the fact that in a resistivity experiment
the self-field can not be eliminated and its value may be
non-negligible at the constrictions between grains. We also
note that a change in the value of the critical conductivity
exponent is observed in experiments performed at zero and
very low applied fields.

It is interesting to observe in Table 1 that the values
fitted for A0 in the studied systems span three orders of
magnitude and are not directly related to the absolute val-
ues of the resistivity in the normal phase (the resistivities
at 100 K are also listed in Tab. 1). The Y123:Zn system
presents the highest value for A0, although its resistivity
at 100 K is about the same as for the other samples. How-
ever, in Y123:Zn the critical temperature is the lowest and
the granularity effects are the most pronounced, as may
be seen in Figures 1 and 3. The Zn-doping induces granu-
larity at the microscopic level. A consequence of this fact
is the shortening of the correlation length ξC for the order
parameter of the coherence transition, as we expect that
ξC is basically given by the size of the superconducting
grain (region where superconductivity is homogeneous).
The value for A0 in the Y123:Sr sample is more than one
order of magnitude lower when compared to that in the
Zn-doped system. The Sr-doping is not as effective as the
Zn-doping to improve the granularity in Y123 probably
because the impurities locate out of the Cu-O2 atomic
planes in the former case. However, the value for A0 in
the Y123:Sr is significantly larger than that for the pure
Y123:b sample. The amplitude A0 is still smaller in our
‘best quality’ Y123:a sample. Thus, the value of A0 seems
related to the strength of granularity in our samples as
estimated by the temperature width and field sensibility
of the regime of approach to the zero resistance state, the
value of Tc, and other properties.

A possible outcome of our experiments and analyses is
that ξC is inversely proportional to A0. In other words, the
typical size of the superconducting grains is much smaller
in Y123:Zn than in the other investigated samples, and
tends to increase as the system becomes pure and well
ordered. Moreover, the fact that A0 is an increasing func-
tion of H , as shown in Figure 6, gives additional support
to this interpretation. Indeed, the longitudinal magnetic
field is expected to decouple the superconducting clusters,
thus shortening ξC .

5 Conclusions

We have experimentally studied the regime of ap-
proach to the zero resistance state in granular
samples of YBa2Cu3O7−δ, YBa1.75Sr0.25Cu3O7−δ and
YBa2Cu2.95Zn0.05O7−δ. The temperature derivative of the
resistivity near Tc reveals that the transition of the studied
systems is a two-stage process. We found that besides pro-
ducing a dramatic depression of Tc, the Zn-doping causes
a significant enlargement of the resistive transition, which
is probably due to an enhancement of granularity effects
at the microscopic length scale. We also notice a relatively
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small but sizeable reduction of Tc and enlargement of the
transition in the Y123:Sr sample.

Our fluctuation conductivity results under longitudi-
nal magnetic fields are interpreted by assuming that a
coherence transition related to phase fluctuations of indi-
vidual grains of the disordered granular array occurs at a
characteristic critical temperature, Tc0(H). This temper-
ature is located well below the pairing critical tempera-
ture, Tc. The state with zero-resistance stabilizes below
Tc0, where a phase coherent and long-range ordered state
is established in the whole granular array.

Extended power law regimes corresponding to critical
fluctuations of the conductivity under longitudinal mag-
netic fields are identified in the regime of approach to
the zero-resistance state. In zero and very low applied
fields, these fluctuations are described by the exponent
λ ∼= 3. With application of magnetic fields above a very
low threshold the exponent changes to λ ∼= 4. The ob-
tained exponents indicate that the static and dynamic uni-
versality classes for the coherence transition is that of the
3D-XY model described by the phase-glass Hamiltonian
of equation (1), where the disorder is nontrivial and crit-
ically relevant. The data could be described by a vortex-
glass type of scaling. This fact suggests that the coher-
ence transition in our granular superconductors fits into
the more general framework of the vortex-glass theory.
The critical amplitude for the fluctuation conductivity in
the regime above the coherence transition was analyzed
for the first time. Its field dependence qualitatively repro-
duces the predicted behavior for the non-linear voltage re-
sponse near a vortex-glass transition [37]. The variation of
the magnitude of the critical amplitude A0 along the series
of investigated samples lead us to suggest that this am-
plitude is inversely proportional to the correlation length
characteristic of the coherence transition.
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